The Stochastic Axion Scenario

Adam Scherlis
with Peter Graham
[1805.07362] to appear in PRD

July 26, 2018

See talk by Takahashi
Introduction: Axion Dark Matter

Two scenarios for the axion:

- Post-Inflationary: PQ breaks after inflation
 Precise mass needed to get axion DM
- Pre-Inflationary: PQ breaks before/during inflation
 Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass

- Or new cosmology/axion models [Agrawal, Marques-Tavares, Xue; Nomura, Rajendran, Sanches; Dine, Fischler; Steinhardt, Turner; Lazarides, Schaefer, Seckel, Shafi; Kawasaki, Moroi, Yanagida; Dvali; Choi, Kim, Kim; Banks, Dine; Banks, Dine, Graesser]

Usual picture:

All masses are natural w/o new physics
Introduction: Axion Dark Matter

Two scenarios for the axion:

- **Post-Inflationary**: PQ breaks after inflation
 Precise mass needed to get axion DM
- **Pre-Inflationary**: PQ breaks before/during inflation
 Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass

- **Or new cosmology/axion models** [Agrawal,Marques-Tavares,Xue; Nomura,Rajendran,Sanches; Dine,Fischler; Steinhardt,Turner; Lazarides,Schaefer,Seckel,Shafi; Kawasaki,Moroi,Yanagida; Dvali; Choi,Kim,Kim; Banks,Dine; Banks,Dine,Graesser]

Usual picture:

All masses are natural w/o new physics
Introduction: Axion Dark Matter

Two scenarios for the axion:
- Post-Inflationary: PQ breaks after inflation
 Precise mass needed to get axion DM
- Pre-Inflationary: PQ breaks before/during inflation
 Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass
- Or new cosmology/axion models [Agrawal, Marques-Tavares, Xue; Nomura, Rajendran, Sanches; Dine, Fischler; Steinhardt, Turner; Lazarides, Schaefer, Seckel, Shafi; Kawasaki, Moroi, Yanagida; Dvali; Choi, Kim, Kim; Banks, Dine; Banks, Dine, Graesser]

Usual picture:

All masses are natural w/o new physics
Introduction: Axion Dark Matter

Two scenarios for the axion:
- Post-Inflationary: PQ breaks after inflation
 Precise mass needed to get axion DM
- Pre-Inflationary: PQ breaks before/during inflation
 Range of compatible masses

Usual lore: overclosure bound (or tuning/anthropics) at low mass
- Or new cosmology/axion models [Agrawal, Marques-Tavares, Xue; Nomura, Rajendran, Sanches; Dine, Fischler; Steinhardt, Turner; Lazarides, Schaefer, Seckel, Shafi; Kawasaki, Moroi, Yanagida; Dvali; Choi, Kim, Kim; Banks, Dine; Banks, Dine, Graesser]

We show that there is no bound:

<table>
<thead>
<tr>
<th>m_a (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_a (Gev)</td>
</tr>
</tbody>
</table>

All masses are natural w/o new physics
Introduction: Misalignment Mechanism

After PQ breaking: axion “frozen” at $f_a \theta_0$
- Final abundance: depends on f_a, θ_0
- Fix DM abundance: relation $f_a \leftrightarrow \theta_0$

Where does θ_0 come from?
- Post-inflation PQ breaking: Temperature reaches f_a
 - Averaged θ_0, string decay $\implies \theta_C$
 - Single f_a for axion DM (“Classical Window”)
- Pre-inflation PQ breaking: Temperature stays below f_a
 - $\theta_0 = \mathcal{O}(1)$ implies $f_a = \mathcal{O}(10^{12} \text{ GeV})$ (“Natural”)
 - Higher f_a requires smaller θ_0
Introduction: Misalignment Mechanism

After PQ breaking: axion “frozen” at $f_a \theta_0$
- Final abundance: depends on f_a, θ_0
- Fix DM abundance: relation $f_a \leftrightarrow \theta_0$

Where does θ_0 come from?
- Post-inflation PQ breaking: Temperature reaches f_a
 - Averaged θ_0, string decay $\Longrightarrow \theta_C$
 - Single f_a for axion DM (“Classical Window”)
- Pre-inflation PQ breaking: Temperature stays below f_a
 - $\theta_0 = \mathcal{O}(1)$ implies $f_a = \mathcal{O}(10^{12}$ GeV) (“Natural”)
 - Higher f_a requires smaller θ_0
Introduction: Misalignment Mechanism

After PQ breaking: axion “frozen” at $f_a \theta_0$
- Final abundance: depends on f_a, θ_0
- Fix DM abundance: relation $f_a \leftrightarrow \theta_0$

Where does θ_0 come from?
- Post-inflation PQ breaking: Temperature reaches f_a
 - Averaged θ_0, string decay $\implies \theta_C$
 - Single f_a for axion DM (“Classical Window”)
- Pre-inflation PQ breaking: Temperature stays below f_a
 - $\theta_0 = \mathcal{O}(1)$ implies $f_a = \mathcal{O}(10^{12} \text{ GeV})$ (“Natural”)
 - Higher f_a requires smaller θ_0
Where does θ_0 really come from?

Scalar field dynamics during inflation:

Every e-fold, two things happen:

- **Sliding**: classical slow-roll towards minimum
 \[
 \phi \mapsto \phi - \frac{m^2}{3H^2} \phi
 \]

- **Hopping**: quantum fluctuations ("random walk")
 \[
 \phi \mapsto \phi \pm \frac{H}{2\pi}
 \]

Eventually reaches equilibrium (independent of initial conditions and N)

\[
m^2 \langle \phi^2 \rangle \sim H^4
\]
Mechanics: Hopping and Sliding

Where does θ_0 really come from?

Scalar field dynamics during inflation:
Every e-fold, two things happen:

1. **Sliding**: classical slow-roll towards minimum

 \[
 \phi \mapsto \phi - \frac{m^2}{3H^2} \phi
 \]

2. **Hopping**: quantum fluctuations ("random walk")

 \[
 \phi \mapsto \phi \pm \frac{H}{2\pi}
 \]

Eventually reaches equilibrium (independent of initial conditions and N)

\[
m^2 \langle \phi^2 \rangle \sim H^4
\]
Where does θ_0 really come from?

Scalar field dynamics during inflation:
Every e-fold, two things happen:

- **Sliding**: classical slow-roll towards minimum
 \[\phi \mapsto \phi - \frac{m^2}{3H^2} \phi \]

- **Hopping**: quantum fluctuations ("random walk")
 \[\phi \mapsto \phi \pm \frac{H}{2\pi} \]

Eventually reaches equilibrium (independent of initial conditions and N)
\[m^2 \langle \phi^2 \rangle \sim H^4 \]
Where does θ_0 really come from?

Scalar field dynamics during inflation:
Every e-fold, two things happen:

- **Sliding**: classical slow-roll towards minimum
 \[
 \phi \mapsto \phi - \frac{m^2}{3H^2} \phi
 \]

- **Hopping**: quantum fluctuations (“random walk”)
 \[
 \phi \mapsto \phi \pm \frac{H}{2\pi}
 \]

Eventually reaches equilibrium (independent of initial conditions and N)

\[
m^2 \langle \phi^2 \rangle \sim H^4
\]
See PPT version for animation!
See PPT version for animation!
Mechanics: Equilibrium Distribution

Fokker-Planck equation:
\[
\dot{\rho}(\phi, t) = \frac{1}{3H_i} \partial_\phi (V'(\phi) \rho(\phi, t)) + \frac{H_i^3}{8\pi^2} \partial^2_{\phi\phi} \rho(\phi, t)
\]

- \(m^2 \langle \phi^2 \rangle \approx H_i^4\)
- Naturally small but nonzero
- \(\theta\) very uniform for individual patch

- \(H_i \leq 800\) MeV: axion has a mass
 - \(H_i \leq 200\) MeV: distribution is Gaussian
 - \(H_i > 200\) MeV: distribution is flat

\[
\rho(\phi) \propto \exp\left(-\frac{8\pi^2}{3H_i^4} V(\phi)\right)
\]
Mechanics: Equilibrium Distribution

Fokker-Planck equation:
\[\dot{\rho}(\phi, t) = \frac{1}{3H_i} \partial_\phi (V'(\phi)\rho(\phi, t)) + \frac{H_i^3}{8\pi^2} \partial_{\phi\phi}^2 \rho(\phi, t) \]

- \(m^2 \langle \phi^2 \rangle \approx H_i^4 \)
- Naturally small but nonzero
- \(\theta \) very uniform for individual patch
- \(H_i < 800 \text{ MeV} \): axion has a mass
 - \(H_i < 200 \text{ MeV} \): distribution is Gaussian
 - \(H_i > 200 \text{ MeV} \): distribution is flat

\[\rho(\theta, H_i) \]

\[\rho(\phi) \propto \exp \left(-\frac{8\pi^2}{3H_i^4} V(\phi) \right) \]
Mechanics: Equilibrium Distribution

Fokker-Planck equation:
\[
\dot{\rho}(\phi, t) = \frac{1}{3H_i} \partial_\phi (V'(\phi) \rho(\phi, t)) + \frac{H_i^3}{8\pi^2} \partial_{\phi\phi}^2 \rho(\phi, t)
\]

- \(m^2 \langle \phi^2 \rangle \approx H_i^4\)
- Naturally small but nonzero
- \(\theta\) very uniform for individual patch
- \(H_i < 800\ \text{MeV}:\) axion has a mass
 - \(H_i < 200\ \text{MeV}:\) distribution is Gaussian
 - \(H_i > 200\ \text{MeV}:\) distribution is flat

Distribution of \(\theta\) over many patches:

\[
\rho(\theta, H_i) \propto \exp \left(-\frac{8\pi^2}{3H_i^4} V(\phi) \right)
\]
Isocurvature

- Random $\mathcal{O}(H_i)$ hops build up over $> 10^{20}$ e-folds
- Inhomogeneities stretch and leave horizon
- Hops from last ~ 60 e-folds remain inhomogeneous

- Significant isocurvature if $H_i > 10^6$ GeV or $\theta \approx \pi \leftrightarrow f_a < 10^{10}$ GeV
Isocurvature

- Random $O(H_I)$ hops build up over $> 10^{20}$ e-folds
- Inhomogeneities stretch and leave horizon
- Hops from last ~ 60 e-folds remain inhomogeneous

Significant isocurvature if $H_I > 10^6$ GeV or $\theta \approx \pi \iff f_a < 10^{10}$ GeV
Results: Summary

For N large enough to reach equilibrium:

Inflationary Axion Parameter Space

E_i (GeV)

H_i (GeV)

\sim 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 10^0 \ 10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8 \ 10^9 \ 10^{10} \ 10^{11} \ 10^{12} \ 10^{13} \ 10^{14}$

$10^7 \ 10^8 \ 10^9 \ 10^{10} \ 10^{11} \ 10^{12} \ 10^{13} \ 10^{14} \ 10^{15} \ 10^{16}$

$10^8 \ 10^9 \ 10^{10} \ 10^{11} \ 10^{12} \ 10^{13} \ 10^{14} \ 10^{15} \ 10^{16} \ 10^{17} \ 10^{18} \ 10^{19}$

$10^0 \ 10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8 \ 10^9 \ 10^{10} \ 10^{11} \ 10^{12} \ 10^{13} \ 10^{14} \ 10^{15} \ 10^{16} \ 10^{17} \ 10^{18} \ 10^{19}$

$10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 10^0 \ 10^1 \ 10^2 \ 10^3 \ 10^4 \ 10^5 \ 10^6 \ 10^7 \ 10^8 \ 10^9 \ 10^{10} \ 10^{11} \ 10^{12} \ 10^{13} \ 10^{14} \ 10^{15} \ 10^{16} \ 10^{17} \ 10^{18} \ 10^{19}$

$10^{-12} \ 10^{-11} \ 10^{-10} \ 10^{-9} \ 10^{-8} \ 10^{-7} \ 10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ eV$

kHz MHz GHz THz

10^8 GeV 10^9 GeV 10^{10} GeV 10^{11} GeV 10^{12} GeV 10^{13} GeV 10^{14} GeV 10^{15} GeV 10^{16} GeV

10^{-12} eV 10^{-11} eV 10^{-10} eV 10^{-9} eV 10^{-8} eV 10^{-7} eV 10^{-6} eV 10^{-5} eV 10^{-4} eV 10^{-3} eV 10^{-2} eV 10^{-1} eV

10^7 GeV 10^8 GeV 10^{10} GeV 10^{11} GeV 10^{12} GeV 10^{13} GeV 10^{14} GeV 10^{15} GeV 10^{16} GeV

10^{-5} eV 10^{-4} eV 10^{-3} eV 10^{-2} eV 10^{-1} eV

$p = .001$

$q = 10^{-100}$

$q = 10^{-1000}$

$q = 10^{-10000}$

$q = .1$

$q = .01$

$q = .001$

$q = .0001$
Results: Reheating

All of this is irrelevant if temperature hits f_a during

1. Inflation: $T_{dS} \sim H_I$

2. Reheating: $T_{rh} \sim \epsilon_{\text{eff}} \sqrt{m_P H_I}$

Inefficient reheating: $T_{dS} > T_{rh}$ at high H_I

Note: $T_{rh} \gg \text{TeV}$ unless extremely inefficient.
Main caveat: need LOTS of inflation

- Low mass: $H_I \lesssim \Lambda_{QCD} \iff E_I \lesssim 10^9$ GeV
- Value of H_I determines width of θ_0 distribution
- Relaxation time: $t_{rel} = 3 \frac{H_I}{m_a^2}$ or $N_{rel} = 3 \frac{H_I^2}{m_a^2}$

Some points that naturally have the right abundance:

<table>
<thead>
<tr>
<th>m_a</th>
<th>f_a</th>
<th>H_I</th>
<th>t_{rel}</th>
<th>N_{rel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 kHz</td>
<td>10^{17} GeV</td>
<td>10 MeV</td>
<td>200,000 yr</td>
<td>10^{35}</td>
</tr>
<tr>
<td>14 MHz</td>
<td>10^{14} GeV</td>
<td>100 MeV</td>
<td>2 years</td>
<td>10^{31}</td>
</tr>
<tr>
<td>14 GHz</td>
<td>10^{11} GeV</td>
<td>1000 MeV</td>
<td>0.5 seconds</td>
<td>10^{24}</td>
</tr>
</tbody>
</table>

See also: Guth-Takahashi-Yin [1805.08763]
(includes low-H_I hilltop potential)
Main caveat: need LOTS of inflation

- Low mass: $H_I \lesssim \Lambda_{QCD} \leftrightarrow E_I \lesssim 10^9$ GeV
- Value of H_I determines width of θ_0 distribution
- Relaxation time: $t_{rel} = 3 \frac{H_I}{m_a^2}$ or $N_{rel} = 3 \frac{H_I^2}{m_a^2}$

Some points that naturally have the right abundance:

<table>
<thead>
<tr>
<th>m_a</th>
<th>f_a (GeV)</th>
<th>H_I (MeV)</th>
<th>t_{rel} (yr)</th>
<th>N_{rel}</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 kHz</td>
<td>10^{17}</td>
<td>10</td>
<td>200,000</td>
<td>10^{35}</td>
</tr>
<tr>
<td>14 MHz</td>
<td>10^{14}</td>
<td>100</td>
<td>2</td>
<td>10^{31}</td>
</tr>
<tr>
<td>14 GHz</td>
<td>10^{11}</td>
<td>1000</td>
<td>0.5 seconds</td>
<td>10^{24}</td>
</tr>
</tbody>
</table>

See also: Guth-Takahashi-Yin [1805.08763] (includes low-H_I hilltop potential)
Conclusion

Conventional claim:

But actually, unless we make assumptions about inflation:

So it’s important to search the entire mass range experimentally.
Backup: Fokker-Planck Formalism

Fokker-Planck equation: \(\dot{\rho}(\phi, t) = \frac{1}{3H_i} \partial_\phi (V'(\phi)\rho(\phi, t)) + \frac{H_i^3}{8\pi^2} \partial_{\phi\phi}^2 \rho(\phi, t) \)

Change variables,

\[\rho(\phi, t) = \psi_0(\phi) \psi(\phi, t) \]

\[\psi_0(\phi) := \exp(-\nu(\phi)) = \exp \left(-\frac{4\pi^2}{3H_i^4} V(\phi) \right) \]

to get Schroedinger-like equation:

\[-\frac{4\pi^2}{H_i^3} \dot{\psi}(\phi, t) = -\frac{1}{2} \psi''(\phi, t) + \frac{1}{2} \left[-\nu''(\phi) + \nu'(\phi)^2 - \frac{3}{M_P^2} \nu(\phi) \right] \psi(\phi, t) \]

Eigenfunctions \(\rho_i = \psi_0 \psi_i \) are quasinormal modes
\(\rho_0 = \psi_0^2 \) is equilibrium distribution
Smallest positive eigenvalue is relaxation rate
Expansion rate is related to energy,

\[3H^2 m_P^2 = V \]

Axion contributes a small amount,

\[V = V_I + V_a \]

\[V_I \gg V_a \]

Regions with large \(\theta \) expand (slightly) faster

This effect suddenly becomes dominant for \(f_a \gtrsim m_P \) at \(H_I \lesssim \Lambda_{QCD} \)

Nearly all patches overproduce with \(\theta \rightarrow \pi \) (for some choice of measure)
Inflaton also has sliding and hopping
If potential is too flat, hopping dominates
\[\implies \text{inflation becomes chaotic (eternal)} \]
Equivalent to minimum “speed” of inflaton, or maximum length of inflation

\[N \lesssim \frac{m^2_P}{H_I^2} \]

Relaxation time violates this bound for \(f_a \gtrsim m_P \) at \(H_I \gtrsim \Lambda_{QCD} \)
Our analysis still works but eternal inflation introduces measure issues